
N{ 8- 15606
,'",:'.-"-70 -7

;: 4";j,

1987

NASA/ASEE SUMMER FACULTY RESEARCH FELLOWSHIP PROGRAM

MARSHALL SPACE FLIGHT CENTER

THE UNIVERSITY OF ALABAMA IN HUNTSVILLE

INVESTIGATION OF CANDIDATE

DATA STRUCTURES AND SEARCH ALGORITHMS

TO SUPPORT A KNOWLEDGE BASED

FAULT DIAGNOSIS SYSTEM

Prepared by:

Academic Rank:

University and

Department:

NASA/MSFC:

Laboratory:
Division:

Branch:

NASA Colleague:

Date:

Contract No:

Edward L. Bosworth, Jr.

Assistant Professor

The University of Alabama in Huntsville

Computer Science Department

Systems Analysis and Integration

Space Systems

Spacelab Payload Integration

Michael S. Freeman

September ii, 1987

The University of Alabama in Huntsville
NGT-01-008-021

V-i

ABSTRACT

The focus of this research was the investigation of data
structures and associated search algorithms for automated

fault diagnosis of complex systems such as the Hubble Space

Telescope (HST). Such data structures and algorithms will

form the basis of a more sophisticated Knowledge Based Fault

Diagnosis System. As a part of the research, several

prototypes were written in VAXLISP and implemented on one of

the VAX-II/780's at the Marshall Space Flight Center. This

report describes and gives the rationale for both the data

structures and algorithms selected. A brief discussion of a
user interface is also included.

V-ii

i. Introduction

This paper will discuss a candidate data structure and
associated search algorithm to be used as the basis for a
Knowledge Based Fault Diagnosis System. Such a system might
also be called an Expert System. The first part of the paper
will define the structure and indicate the ways in which it
matches the requirements of the fault diagnosis problem. In
the second part of the paper, the shortcomings of the
algorithm are indicated and indications given of modifica-
tions needed in order for the fault diagnosis task to be
approached efficiently.

2. Objectives

The objective of this research is to support the
development of an Automated Fault Diagnosis System to be
used on the Hubble Space Telescope while on orbit. The
primary function would be to interpret the downlink health
telemetry on the HST and assist the operators in
hypothesizing possible system faults and in deciding the
proper corrective actions to be taken. Ideally, such a
system would monitor performance trends and predict the time
at which component operating capability would be so far
degraded as to require corrective action.

For the purpose of fault diagnosis, the orbital mission
of the Hubble Space Telescope may be divided into two time
periods. The first period, lasting about six to nine
months, is called the Orbital Verification Mission. This is
a time during which all of the systems in the HST will be
checked out and during which particular attention will be
paid to the possibility of system faults. This period will
be characterized by a high volume of system diagnostic
information which could well be fed into a Knowledge Based
Fault Diagnosis System such as is the subject of this
research.

The second and much longer time period in the operation
of the HST is the operational phase during which the
telescope is expected to be collecting a large amount of
scientific data. During this time the normal mode for
collection and reporting of system health data will be the
low data rate telemetry; i.e., there will be a low volume of
data from which to infer the system status. A Knowledge
Based Fault Diagnosis System could well be used during this
phase, especially if it had the ability to detect potential
failures and to devise measurements to be made during a
brief period of high data rate health telemetry in order to
confirm or deny the hypothesis.

V--i

3. Design of the Data Structure and Search Algorithm

The efficiency of a computational solution to any
interesting problem depends, in general, on the choice of

two items: a data structure appropriate to represent the

structure of the problem and an algorithm which can operate

efficiently on the selected data structure. One should note

that these two are often quite interdependent: it is usually

the case that the more appropriate the data structure, the

less complex and more efficient the algorithm associated.
This section will describe the selection of a data structure

which fits the fault diagnosis problem quite well.

3.1 Choice of the Data Structure

As stated above, it is desirable to choose a data

structure for at least two reasons: I) natural description

of the problem to be solved, and 2) the expected efficiency

of the associated algorithm. For these criteria to be

applied, one must first ask the fundamental question of what

part of the problem is the more important to be represented
efficiently.

In the fault diagnosis problem, the key feature to be

represented is the interrelationship of the components in

the structure being modeled. The usual method for

representing this structure is a design schematic. There

are two common data structures which will correspond

naturally to a design schematic: a Tree and a Directed

Acyclic Graph (DAG). Both of these are specializations of

the general graph data structure.

The graph data structure comprises a collection of nodes,

usually denoted as V, and a set of edges, usually denoted as

E, connecting the nodes. The nodes are also called vertices,

hence the symbol V for the set of nodes. One may name the

edges by the nodes connected. Thus if

V = (Vl, V2, , Vn) - a set of n vertices

E = (El, E2, , Em) - a set of m edges

We might name an edge as Ei = (Vj, Vk); thus the edge (Vl,

V2) connects vertex 1 to vertex 2. The degree of a node is

the number of edges connected to it.

V-2

A graph may be either directed or undirected; i.e., it
may have edges which are directed or undirected. The edges
in an undirected graph are similar to two way streets
connecting intersections; thus if the edge (Vi, Vj) exists,
so does the edge (Vj, Vi). Edges in a directed graph are
similar to one way streets in that the existence of an edge
(Vi, Vj) does not automatically imply the existence of (Vj,
Vi). If both edges do exist in the graph, they must be
called out explicitly in the edge list. Note that an node
in a directed graph usually has a number of edges for which
it is the first node in the pair and a different number of
edges for which it is the second node in the pair describing
the edge. The former number is called the "out-degree" of
the node; the latter the "in-degree".

The directionality of a graph provides a natural mechanism
for the representation of hierarchies normally found in
design schematics. Thus the edges in a directed graph might
represent the relationship "subcomponent". Note that if Vl
represents a component in the design schematic and V2, V3,
V4 represent its subcomponents, this fact may be naturally
expressed by the edge list (Vl, V2), (Vl, V3), (Vl, V4).
Here the directionality represents the hierarchy; in
particular Vl is not a subcomponent of V2. Note that in
this representation, the out-degree of a node is the number
of immediate subcomponents.

A path in a directed graph, denoted here as P (i, j) is a
list of edges in the edge set E which connects Vi to Vj. In
a design schematic the existence of a path from Vi to Vj
would imply that the component represented by Vj is a
subcomponent of Vi. Thus if the edge list for the graph
included (Vl, V2), (V2, V5), and (V5, V9), one could
construct the paths P (i, 5), P (i, 9), and P (2, 9). Note
that edges in the edge list are not usually called paths
although they are such in the strict sense.

A cycle in a directed graph is a path of more than one edge
which starts and ends on the same node. A graph is said to
be acyclic if there are no cycles in it. A directed graph
which is acyclic is called, naturally enough, a Directed
Acyclic Graph or DAG. Note that the DAG structure is a
natural representation of a design schematic because the
absence of cycles implements the requirement that no
component be a subcomponent of itself.

V-3

There are two specializations of a Directed Acyclic
Graph which should be considered for representing the design
schematic: the tree and a "tree-like DAG". A tree is a DAG

with two constraints, one of which is that there be a

distinguished node, often called the "root node", which has

an in-degree of zero. While it can be shown that a Directed

Acyclic Graph must have at least one such distinguished node

with in-degree zero, the DAG may have more than one such

node. The "tree-like DAG" is a DAG with only one node of

in-degree zero. This root node has a natural analogue in

the design schematic; it is the entire system not broken

into subcomponents.

The main difference between a tree and a tree-like DAG

is that the nodes of the tree are constrained to have an

in-degree of one whereas there is no such constraint on a
tree-like DAG. This would correspond in a design schematic

to the requirement that a component be a subcomponent of

only one other component. There are components, such as the

electric power, which are clearly subcomponents of many

other components. Attempts to represent this in a tree
structure would cause one node to be constructed for each

occurrence of the component and thus lead to inefficiencies

in the search process. These inefficiencies are caused by

the fact that a fault search algorithm will examine each
node in the data structure and thus examine a common

subcomponent a number of times, even after its status has
been established. The data structure of choice is thus a

tree-like Directed Acyclic Graph.

3.2 Choice of an Associated Data Structure

One of the main objectives in the use of a tree-like DAG

is the avoidance of multiple representations of the same

component in the design schematic. This becomes a concern

only when a component is to be added to the DAG. The

question: Is it already in the DAG?

In order to develop an answer to the above question, one

must look more closely at the structure of a node in a

graph. Typically the node has an ID and a label. The ID

might be thought of as the "variable name" used in the

computer program to reference the node. The label might be

thought of as the "schematic name" of the node; i.e., the

name of the component in the design schematic which the node

represents. Thus, in the above example, node Vl might

represent the Pointing Control System. The node ID is "VI"

The label is "Pointing Control System".

V-4

Suppose one wanted to determine whether or not to create
a node with the label "Pointing Control System". It would
be necessary to determine whether or not the DAG contained a
node with the identical label and to create a new node only
in the case that an existing node were not found. The most
straightforward approach is extremely inefficient. This
approach is to search the DAG every time a node with a new
label is considered for insertion.

A more efficient approach to this problem is to create
an associated data structure to maintain a list of the
labels of nodes in the DAG. This list could be consulted

more quickly than the DAG could be searched exhaustively for

the label. The only constraint to this approach is that the
DAG and associated data structure must be treated as a

single abstract data structure with well defined constructor
functions. Were either the DAG or the associated data

structure manipulated separately, an inconsistency would

probably arise and the DAG would become of little use.

3.3 VAXLISP Implementation

The Directed Acyclic Graph was implemented in VAXLISP as

a COMMON LISP structure. The following code describes the

node structure.

(Defstruct (Component

(:conc-name Node-)

:predicate)

"A node for representing a component in the design
schematic"

(Name Nil) ;The name in the design schematic

(Subcomponents Nil) ; Note the default values.

(Contained-ln Nil)

(Search-Seq 0))

The first slot in the structure contains the schematic

name of the component represented by the node. In other

words, this is the label of the node. The second slot will

contain a structured list, discussed below, of the

subcomponents of this component. The third slot contains a

list of the components of which this component is itself a

subcomponent. The search sequence entry is an integer used

by the search algorithm to avoid excessive searching. Its
use is also described below.

The associated data structure is a COMMON LISP Hash

Table. The hash table is organized by (key, value) pairs.

The key of this table will be the label or schematic name of
each node. The value will be the ID of the node. Note that

the node ID is used internally by the program and is not

intended for communication with the user of the system.

V-5

The following COMMON LISP construct establishes a hash

table of 197 entries as a global variable. The number 197

is chosen as a prime number with a value of about 200. The

size of hash tables conventionally is set as a prime number

with a value about twice the number of expected entries.

(Defvar *Component-List* (Make-Hash-Table: Size 197))

In order to understand how the hash table is used, one

must understand the operation of the basic retriever
function Gethash.

(Gethash Schematic-Name *Component-List*)

This function caused the hash table *Component-List* to

be searched for an entry with a key given by the value of

the variable Schematic-Name. If such an entry is found, the
value (which here is the ID of the node associated with the

schematic name) is returned. If no entry is found, the

value Nil (here equivalent to logical FALSE) is returned.

One should also understand the general function Setf.

(Setf (Gethash Schematic-Name *Component-List*) Node-ID)

This function sets the entry (Schematic-Name, Node-ID)

in the hash table. Note that in general, Serf takes as its

first argument a retriever function and as its second

argument a value to be given to the variable accessed by the
retriever function.

AS mentioned above, the Directed Acyclic Graph and Hash

Table must be accessed as a single abstract data type. A

typical function is that which creates a new node. It first

checks the hash table to avoid making a duplicate. If it

continues, it first updates the hash table and then creates
the associated node.

(Defun Create-Component (Schematic-Name)

"Creates a structure node with a component with

a given name"

(Unless (Gethash Schematic-Name *Component-List*)

(Let

((Node-ID (Gensym "NODE-")))

(Setf (Gethash Schematic-Name *Component-

Node-ID))

(Set Node-ID

(Make-Component: Name Schematic-Name)))))

List*)

V-6

The basic structure of the above function is the UNLESS
clause, which has as its skeletal structure

(Unless (Something)(Action))

The action form is to be executed if the first form
returns Nil, which in this case means that the Schematic-
Name is not found in the hash table. The action form works
with a temporary binding of the variable Node-ID to a symbol
returned by the LISP function Gensym. What we are doing
here is creating a new variable name; e.g. NODE-2940, to be
used as the ID of the node generated by the function Make-
Component, which is the constructor function for the DAG.

3.4 Structure of Slots for Component Lists

Each node in the Directed Acyclic Graph has two slots

containing lists of components. These slots are (Contained-

In) and (Subcomponents). The structure of the Contained-ln

slot is a list of the form (Contained-In (Vl V2 V3)) which

is merely a list of those components of which the given

component is a subcomponent or to which it passes data.

The Subcomponents slot must contain more information

than just a list of the subcomponents. This slot should

also contain information indicating the dependence of the

component on the functioning of its subcomponents.

Basically, there are two types of subcomponent lists: AND

(the default) and OR. The two lists types may be
characterized as follows:

AND - A component modeled by an AND subcomponent list is
not more functional than the least functional of

its subcomponents. This criterion merely states

the fact that most components depend on the proper

functioning of all the subcomponents.

OR - A component modeled by an OR subcomponent list is

not less functional than the most functional of

its subcomponents. This criterion allows for the

proper modeling of redundant subcomponents.

While one should note that there might exist real

hardware components which have both redundant and non-

redundant subcomponents, these can be modeled effectively as

a collection of pure AND and OR nodes.

v-7

An additional feature thought to be important in the
representation of subcomponent lists is an ability to

express the dependence of a component on the proper

functioning of each subcomponent. Thus each subcomponent is
itself represented by a list of the form

(Component-Name Sensitivity-Factor)

Thus, a typical subcomponent slot might resemble one of
the following:

(Subcomponents (AND (VI i00) (V2 80) (V3 55)))
(Subcomponents (OR (V5 95) (V6 75)))

3.5 Combination Rules for Subcomponent Functionalities

The functionality of a given component is obviously
dependent upon the functionality of its subcomponents. The

exact nature of this dependence is different for AND and OR

nodes. The combination rules for each class of nodes

according to the nature of the subcomponent lists will be
discussed in this section.

The basic rule for functionality of an AND node is built

around the minimum value function MIN. The formula is given
by

F = MIN [A(fl,sl), A(f2,s2), ... A(fn,sn)]

where for each subcomponent we have fi = the functionality

of that subcomponent si = the sensitivity factor describing

the dependence of the component upon that subcomponent

The A function should follow these two rules

A(fi,0) = 1 implying that if the component does not

depend on the proper functioning of that

subcomponent the subcomponent should be

combined as functional. This is an extreme
case.

A(fi,l) = fi implying that complete dependence should

use the functionality factor itself.

There are a number of candidates for the A function, but
the following seems to be the best:

A(f,s) = 1 + (f - i) * s

V--8

The reasons for selection of this function are:

i) There is no theoretical reason to prefer a more
complex function.

2) This function shows the correct behavior.

3) The free parameter "s" can be chosen for each

subcomponent and component pair so as to show the desired
dependency over a reasonable range of functionalities.

The rule for functionality of an OR node is achieved by
similar logic:

F = MAX [fl*sl, f2*s2, fn*sn]

3.6 Search Algorithms

Having established the data structure for representing
the components to be examined by a fault diagnosis

algorithm, it is now time to discuss the design of an
algorithm to search through the data structure and isolate

the faulty component. This design actually has two such

algorithms both built around the concept of a search
sequence number.

Search sequence numbers are a generalization of the

concept of node marking found in many graph and tree search

algorithms. Node marks generally are thought of as Boolean

variables having the values TRUE or FALSE. An alternate

representation of the node mark would be a search sequence
number having only the permissible values 0 or i.

In a node marking scheme, one also has two search

algorithms. The first and simplest visits all nodes in the

structure and sets the value of the mark to FALSE or not

visited. The second and more focused search visits and

marks all unmarked nodes which meet a predefined search

criterion. Note that this gives rise to an overhead roughly
equal to the search time for a specific item.

In the search sequence approach, there is a global
variable which counts sequentially the searches undertaken

during the current session. This variable is passed to the

search procedure as a parameter in its list of arguments.

As the search procedure visits each node it checks that

node's search sequence number. If the node's search

sequence is equal to the current value of the sequence
number used by the search procedure, the node is considered

to have been searched previously by this invocation of the

search procedure and the node in not further examined.

Otherwise the node is marked with the current search

sequence number and is evaluated for expansion.

V-9

The associated search algorithm, called SWEEP, functions

by performing a simple Depth First Search of the data

structure and resetting the search sequence number of each

node to zero. After having done this, it resets the global

search sequence variable to one. Note that this procedure

is undertaken to reduce the overhead seen in the simple node

marking algorithm. It order to implement this, one must

pick a maximum search sequence (say 1000). For a maximum

search sequence of 1000, the SWEEP algorithm is called only

once per one thousand directed searches. This procedure is

similar to using a module counting sequence, but is robust

against the ambiguities caused in such schemes when the
count exceeds the module base (here I000) and reverts to a

small number (1001 becoming i). Although it is provable

that the search context will allow a high probability of

disambiguating such sequence numbers, this more robust

approach will guarantee against them will very little
additional computational effort.

The search algorithm is a Best First Search with

iterative deepening. It is called with two parameters - a

node ID and a search sequence number. At each level, the
node is examined to see if it is marked with the current

sequence number. Should it be so marked, the next node in

the search priority list is examined. Should the node not

be so marked, it is given the current search sequence number

and examined. Part of this examination will be obtaining

the subcomponent list and comparing the components in that

list to those in the search priority list. Nodes seen in

both list will be marked with a high search priority; i.e.

moved to the front of the search priority list. The reason
for this is the common observation that if two failed

components have a subcomponent in common, then that

subcomponent is quite suspect.

3.7 Search Heuristics

There is one fault in the above described search

algorithm. That fault is due to the fact that the Directed

Acyclic Graph being searched is based on the design

schematic of the device under diagnosis.

The advantage of basing a search strategy on the design

schematic is obvious. Such an approach allows a very
efficient and focused search. This is even true when one

allows for faults which commonly occur in the inter-

component connections. One can easily write algorithms to

assume that certain components are functional but are

detached from the main circuit in that their output is

becoming lost.

V-10

What cannot be handled efficiently by the algorithmic
approach are those cases in which the device under diagnosis
has components which do not show in the design schematic. A
simple example of such a component is a bridging fault or
short circuit, both of which represent a connection which is
not present in the schematic.

In the algorithmic approach, the design schematic is
used as a basis for focusing the search. If this focusing
basis be lost, the algorithm will devolve into an exhaustive
search of all components and consequently become extremely
inefficient. It is for this reason that a heuristic

approach to the search must be devised.

The primary use of search heuristics will be to maintain

the focus of the search algorithm when it becomes obvious

that the fault in the system cannot be explained under the

assumptions imposed by the design schematic. These

heuristics will make use of device design information and

expert engineering judgement in order to postulate the most

likely deviation from the design schematic. Although some

work has been done in applying these heuristics to simple

digital circuits, much work is yet to be done before

applying them to devices of the complexity of the Hubble

Space Telescope.

V-II

4. Conclusions and Recommendations

While it seems obvious that an automated fault diagnosis

system would be of considerable benefit in the operation of

the Hubble Space Telescope, it is also apparent that an

algorithmically based fault diagnosis system will not be

sufficiently sophisticated to fulfill the mission.

One of the major modifications which will be necessary

to this research is the design of a heuristic to evaluate

the list of subcomponents for each node expanded in order to
select the node to be next examined. It is this heuristic

which will be based on knowledge of the physical design of

the component represented by the node being examined and

which must make plausible inferences as to additional

unrepresented circuit faults.

This research has identified a considerable amount of

the algorithmic structure which must underlie a

heuristically based fault diagnosis system. It is
recommended that future research be undertaken in order to

complete the algorithmic approach and extend it to the more

satisfactory heuristic approach.

V-12

5. References

. Davis, R.; Diagnostic Reasoning Based on Structure

and Behavior, Artificial Intelligence 24 (1984)

347-410

• Genesereth, M. R.; The

Automated Diagnosis,

(1984) 411-436•

Use of Design Descriptions in

Artificial Intelligence 24

•

.

Keravnou, E. T. and Johnson L.; Competent Expert

Systems, published by McGraw-Hill, 1986.

de Kleer, J. and Williams, B.C.; Diagnosing Multiple

Faults, Artificial Intelligence 32 (1987) 97-130.

.

,

Reiter, R.; A Theory of Diagnosis from First

Principles, Artificial Intelligence 32 (1987) 57-95.

Steele, G. L.; Common Lisp, the Language, published

by Digital Press, 1984.

V-13

